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Abstract

Magneto-sensitive (MS) elastomers are a class of smart materials whose mechanical properties change instantly by

the application of a magnetic field. These materials typically consist of micron-sized ferrous particles dispersed in an

elastomer. The full system of equations for deformable MS solids in an electro-magnetic field is first considered. Then,

the strain-energy functions for isotropic MS elastomers are presented and a simple phenomenological model is sug-

gested. Finally, to illustrate some of the features of the derived model, a MS elastomer confined by parallel top and

bottom plates is subjected to shear deformation under the influence of a magnetic field normal to the plates. An

acceptable agreement is illustrated between numerical simulation and experimental observation.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Magneto-sensitive (MS) (in literature magnetorheological––MR) elastomers are materials that respond

to an applied magnetic field with an instantaneous change in the mechanical behavior. An improved un-

derstanding of MS elastomers is demanded by the prospect to provide simple, reliable and rapid-response
interfaces between controls laws and mechanical systems. It is now well recognized that MS elastomers have

the potential to improve the design of electromechanical devices and their operation. For example, an

elastomer with field dependent properties may be used as a device with a variable stiffness. Therefore, this

wide range of potential applications and associated economic benefits are the reason for the intense re-

search on these materials in recent years, see for example Borcea and Bruno (2001), Carlson and Jolly

(2000) and Jolly et al. (1996a).

The magnetic efficiency to change field dependent mechanical properties is optimized by choosing a

particle material with a high magnetic saturation. Cobalt has the largest saturation of 2.4 T of all known
elements, however it is not used commercially. In general an alloy of iron with a magnetic saturation of 2.1

T is used as an additive in the mixing process of MS elastomeric compounds.
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MS solid elastomers are less well publicized and recognized than their electro-sensitive (ES) counter-

parts. Both elastomers are composed of polarizable particles, dispersed in a polymer medium, having a size

on the order of a few microns (typically from 10�7 to 10�5 m). Carrier fillers are selected based upon

their electro-magnetic and thermo-mechanical properties: silicone and/or other rubber-like materials
with very small electric conductivity. Typical particle volume fractions are between 0.1 and 0.5. During

the manufacturing process of MS elastomers, the isotropy condition inherent of the filler material is

maintained in the final composite. Therefore, these materials are considered isotropic and non-conductive.

We assume, for simplicity, that they remain isotropic even during the application of a magnetic field.

However, MS elastomers become non-homogeneous due to the presence and distribution of particles in the

carrier filler.

Structurally, field responsive elastomers can be thought of as the solid analogs of field responsive non-

colloidal suspensions or fluids, see for example Ginder and Davis (1994). There are however some distinct
differences in the way in which these two classes of materials are intended to be used. The most important

one is that the field sensitive particles within the elastomer composite are intended to always operate in the

pre-yield regime, see Carlson and Jolly (2000). Therefore, field responsive elastomers can best be described

by a field dependent modulus, see for example Borcea and Bruno (2001), Jolly et al. (1996a), Rigbi and

Jilken (1983).

Jacob Rabinow at the US National Bureau of Standards introduced MS materials in the late 1940s, see

Rabinow (1948). At about the same time, initial experimental results on electrorheological fluids were

published by Winslow (1949). Following the discovery of these materials, the major interest was dedicated
towards ES materials in the late 1940s and early 1950s, which is evident by the larger number of patents and

publications. Except for the interest immediately following Rabinow�s work, there has been little new in-

formation about and publications on MS media. Recently however, MS elastomers have been recognized as

a commercially viable product and thus, an increase in research and publication is recognized (see for

example Kordonsky, 1993; Carlson and Jolly, 2000; Jolly et al., 1996a). A number of MS elastomers and

various MS elastomer-based systems have successfully been brought into the market, including adaptive

tuned vibration absorbers, stiffness tunable mounts, suspensions and automotive bushing.

In the following analysis, we consider the MS elastomer as a moving non-polar isotropic continuum.
Section 2 starts with the classical work by Pao (1978). We summarize the full system of equations for the

moving isotropic non-polar continuum medium in an electro-magnetic field such as the Maxwell equations,

the mechanical and thermodynamical balance laws. In Section 3 we derive the basic system of constitutive

equations for MS elastomers using a phenomenological approach based on experimental data by Carlson

and Jolly (2000). The reduced system of constitutive equations is complemented by the system of boundary

and initial conditions. In Section 4 we present and analyze a simple strain-energy function for MS elasto-

mers. For illustration of the presented phenomenological model, in Section 5 we examine the basic ope-

rational features of controllable incompressible elastomeric devices. The final section is devoted to
concluding remarks.
2. Physical laws for moving continuum media in an electro-magnetic field

Let a continuum deformable solid in the reference configuration occupy a domain X � R3. In the de-

formed configuration each point X 2 X moves into the position x ¼ Xþ u ¼ vðt;XÞ 2 R3 where u and v are

the displacement and mapping, respectively, and t is the parameter describing the motion of the medium

(usually, this is the physical time). We consider a one-to-one, i.e. locally invertible and orientation-pre-

serving mapping in X for every t > 0.

In this paper standard mathematical notations are used; for more detail we refer to the textbook by Lurie
(1990). Namely, for the scalar u, vectors a, b and second-order tensors A, B the algebraic rules are
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a � b ¼ aibi; jaj2 ¼ a � a;

a
 b ¼ feijkaibjgk¼1;2;3; ab ¼ faibjgi;j¼1;2;3;

A : B ¼ AijBij; jAj2 ¼ A : A; A � b ¼ fAijbjgi¼1;2;3;
and the spatial differential operators of divergence, gradient and rotor are given by
div a ¼ oai
oxi

; divA ¼ oAij

oxj

� �
i¼1;2;3

; oxu ¼ ou
ox

¼ ou
oxi

� �
i¼1;2;3

;

oxa ¼ oa

ox
¼ oai

oxj

� �
i;j¼1;2;3

; rot a ¼ eijk
oaj
oxi

� �
k¼1;2;3

;

where over repeated indices the summation rule applies. For the basis vectors ei the permutation or the
Levi–Civita symbol is eijk ¼ ðei 
 ejÞ � ek with eijk ¼ 1 or )1 according to whether the indices are in a cyclic

or an anticyclic order, respectively, and eijk ¼ 0 otherwise.

The gradient of mapping or deformation tensor F, the velocity v, its spatial gradient l and its defor-

mation tensor d are respectively defined by
F ¼ ov

oX
; v ¼ ov

ot
; l ¼ oxv; d ¼ 1

2
ðlþ lTÞ;
where the superscript T denotes the transpose of a tensor.

For the total time derivative of a scalar-valued function u ¼ uðt; xÞ and a vector-valued function
a ¼ aðt; xÞ the classic formulas of Euler are used, respectively,
_uu ¼ du
dt

¼ ou
ot

þ v � oxu;

_aa ¼ da

dt
¼ oa

ot
þ v � oxa:
In the most general case the moving non-polar deformable solid in the present (current or actual)

configuration is described by

• electro-magnetic variables such as the electric field intensity E, the magnetic field intensity H, the electric

induction or displacement D, the electric polarization density P (electric moment per unit volume), the

magnetic flux density or magnetic induction B, the magnetic polarization (magnetization) density or in-

trinsic induction M (magnetic moment per unit volume), the free electric current density J and the free

electric charge density q (see e.g., Eringen and Maugin, 1989; Jackson, 1983; Pao, 1978);

• mechanical variables such as the deformation tensor F, the velocity v and its spatial gradient l, the density

q, the stress tensor r and the external mechanical body force density f per unit mass. For more detail we
refer to the textbooks by Holzapfel (2001), Lurie (1990) and Truesdell (1991);

• thermodynamic variables such as the absolute temperature T and the Cauchy heat flux Q, (see e.g.,

Holzapfel, 2001; M€uuller and Rugerri, 1993).

For these variables the appropriate physical laws are well known.

The Maxwell equations for continuum media are presented here in the standard meter–kilogram–second–

Coulomb units, as discussed in detail by Eringen and Maugin (1989), Jackson (1983) and Pao (1978).

The electric field intensity E and the magnetic flux density B are regarded as the basic variables in a
vacuum. For condensed media additional variables, such as the electric polarization density P and the
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magnetic polarization density M are introduced. The interconnection of these variables are shown in the

following relations 1
1 N
D ¼ e0Eþ P; B ¼ l0HþM; ð2:1Þ
where e0 
 8:85
 10�12 and l0 ¼ 4p 
 10�7 
 1:26
 10�6 are two universal constants (the second one is
the magnetic permeability of a vacuum). These constants are related by the equation e0l0 ¼ c�2 where c is
the speed of light in vacuum.

The Gauss, Faraday and Ampere laws are respectively given by
e0divðEÞ ¼ q� divP; ð2:2Þ

rotEþ oB

ot
¼ 0; ð2:3Þ

l�1
0 rotB ¼ e0

oE

ot
þ oP

ot
þ l�1

0 rotMþ J; ð2:4Þ
where �divP is the polarization charge, oP=ot is the polarization current, and l�1
0 rotM is the magneti-

zation current.

The conservation of magnetic flux density reads
divB ¼ 0: ð2:5Þ
The equation for the conservation of electric charge oq=ot þ div J ¼ 0 is not an independent equation,

which follows from Eqs. (2.2) and (2.4) and the identity div rotð�Þ � 0.

Mechanical balance laws for solids in the local form are the conservation of mass for closed systems and

the balance of linear momentum in the following forms, respectively,
_qq þ qdiv v ¼ 0; ð2:6Þ

q _vv ¼ divr þ qf þ fe; ð2:7Þ
where fe is the electro-magnetic force. From the Dipole-Current Circuit Model for moving continuum

medium this force is given by Pao (1978)
fe ¼ qEþ J
 Bþ l�1
0 ðoxBÞ �Mþ ðoxEÞ � Pþ o

ot
ðP
 BÞ þ divðvP
 BÞ: ð2:8Þ
It is further shown by Pao (1978) that the balance of angular momentum takes the local form
e : r þ ðl�1
0 Mþ v
 PÞ 
 Bþ P
 E ¼ 0; ð2:9Þ
where e denotes the third-order permutation tensor with the Levi–Civita symbol as its components.

The laws of thermodynamics have the following form (see e.g., Holzapfel, 2001; M€uuller and Rugerri,

1993; Pao, 1978).

The first law is the balance of energy in the local form
q
d

dt
U

�
þ 1

2
jvj2

�
þ divQ ¼ divðr � vÞ þ qf � vþ qRþ we; ð2:10Þ
where U and R denote the specific, i.e. per unit mass, internal energy and the radiant heating, respectively.

Here we is the electro-magnetic power, which is defined through
ote, that the relation B ¼ l0ðHþMÞ has also been used by Pao (1978). Here we replace M by l�1
0 M in all relations.



I.A. Brigadnov, A. Dorfmann / International Journal of Solids and Structures 40 (2003) 4659–4674 4663
we ¼ fe � vþ Je � Ee �Me �
dB

dt
þ q

d

dt
P

q

� �
� Ee; ð2:11Þ
where Je is the effective conduction current, Ee is the effective electric field intensity and Me is the effective

magnetization in the rest frame, which according to Minkowski theory (1908) are related to the laboratory

frame variables by
Je ¼ J� qv; Ee ¼ Eþ v
 B; Me ¼ l�1
0 Mþ v
 P: ð2:12Þ
Using Eqs. (2.6) and (2.7) we easily get the reduced form of Eq. (2.10), which reads
q _UU þ divQ ¼ r : l�Me � _BBþ Je � Ee þ qRþ _PP � Ee þ ðP � EeÞdiv v: ð2:13Þ
From a great number of formulations (not equivalent) of the second law of thermodynamics, we select
the local formulation of the Clausius–Duhem inequality
q
dS
dt

þ div
Q

T

� �
� q

R
T

P 0; ð2:14Þ
where S is the specific entropy. The law describes the requirement that the internal entropy does not de-
crease in time. For more detail we refer to the textbooks by Holzapfel (2001), Lurie (1990) and Truesdell

(1991).

Introducing the well known specific Helmholtz free energy W through
W ¼ U � TS � 1

q
Ee � P; ð2:15Þ
using the standard relation
r : l ¼ ðF�1 � rÞT : _FF; ð2:16Þ
and substituting Eqs. (2.15) and (2.10) into Eq. (2.14) we obtain the main dissipation inequality
�qð _WW þ _TTSÞ þ ðF�1 � rÞT : _FF�Me � _BB� 1

T
Q � oxT þ Je � Ee � P � _EEe P 0: ð2:17Þ
We shall name the system of equations (2.2)–(2.7), (2.9), (2.13) and the inequality (2.17) as the basic system.
3. Reduction of the basic system for hyperelastic MS solids

It can easily be verified that the basic system is indeterminant, i.e. there are more unknown variables

than equations. The system is rendered determinate by providing a sufficient number of constitutive ma-

terial laws. Here we consider only hyperelastic solids, thus no viscosity dependence needs to be accounted
for. For these solids the stress tensor and the work done by the stresses do not depend on the path of

deformation, which takes the solid from the reference to the current configuration. Hyperelasticity implies a

conservative structure, i.e. the stress is obtained as the derivative of the scalar Helmholtz free-energy

function with respect to a work conjugate strain field (see for example Holzapfel, 2001; Lurie, 1990; Ogden,

1997; Truesdell, 1991).

From a thermodynamical point of view, the variables ðv;F;Ee;B; T ; oxT Þ are independent quantities for
hyperelastic materials as discussed by Truesdell (1991) and Truesdell and Noll (1992) and thus we need to

define constitutive relations for ðU ; S; r;P; Je;Me;QÞ.
The heat flux vector Q is given by the Fourier law of heat conduction as shown for example by M€uuller

and Rugerri (1993)
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Q ¼ �koxT ; ð3:1Þ
where k > 0 is the thermal conductivity, which can be assumed constant for almost every engineering

material. For all remaining constitutive relations we drop the dependence on the temperature gradient oxT .
From the principle of material objectivity as shown by Lurie (1990) and Truesdell (1991), for example, it

follows that all constitutive relations are independent on v. As a result, we have
U ¼ ÛUðT ;F;Ee;BÞ; ð3:2Þ
where U ¼ ðU ; S; r;P; Je;MeÞ is the generalized vector of unknown quantities.

Using Eqs. (3.1) and (3.2) and computing _WW in Eq. (2.17) we obtain the following form of the Clausius–
Duhem inequality:
� q
oW
oT

�
þ S

�
_TT � q

oW
oF

�
� ðF�1 � rÞT

�
: _FF� q

oW
oEe

�
þ P

�
� _EEe � q

oW
oB

�
þMe

�
� _BB

þ k
joxT j2

T
þ Je � Ee P 0: ð3:3Þ
This inequality must be satisfied at all times and at every fixed point in space for all admissible thermo-

dynamic processes, i.e. processes compatible with the balance laws and the constitutive response functions.

Since the quantities _TT , _FF, _EEe and _BB are independent, see for example Truesdell and Noll (1992), and since the

inequality in Eq. (3.3) is linear in these rates, we obtain
S ¼ � oW
oT

; ðF�1 � rÞT ¼ q
oW
oF

; P ¼ �q
oW
oEe

; Me ¼ �q
oW
oB

; ð3:4Þ
and the reduced dissipation inequality is given by
k
joxT j2

T
þ Je � Ee P 0: ð3:5Þ
Isotropic continuum media is described by the following well-known experimental laws involving the

electro-magnetic variables previously introduced in Eq. (2.1), see Jackson (1983) and Pao (1978)
J ¼ gE; D ¼ ee0E; B ¼ ll0H; ð3:6Þ
where the scalar functions g ¼ gðx;EÞP 0, e ¼ eðx;EÞP 1 and l ¼ lðx;HÞP 1 are the electric conduc-

tivity, the relative dielectric permittivity and the relative magnetic permeability, respectively. In the vacuum
g � 0, e � 1 and l � 1.

From Eqs. (2.1), (2.12) and (3.6) we obtain the constitutive relations for the effective conduction current

Je and the effective magnetization Me as
Je ¼ gE� qv; Me ¼ cBþ ðe � 1Þe0v
 E; ð3:7Þ
where c ¼ ðl � 1Þðl0lÞ
�1 P 0 is the function of magnetic saturation, which is easily defined from the

standard l0jH j7!jBj experimental curve, see for example Jolly et al. (1996a).

In this and the following sections some of our assumptions are based on experimental data as given by

Carlson and Jolly (2000) and Jolly et al. (1996a).

The main assumption is that MS materials have no electric polarization
P ¼ 0; ð3:8Þ
i.e. e � 1 in all relations. From Eq. (3.7)2 we haveMe ¼ l�1
0 M ¼ cB. As a result, from the law of the balance

of angular momentum in the form shown by Eq. (2.9), it follows that the stress tensor r is symmetric, i.e. it

is the Cauchy stress tensor and thus the equality r:l ¼ r:d applies.
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It follows from the above assumptions and relations that the basic system can now be rewritten as
divE ¼ q
e0
; ð3:9Þ

rotEþ oB

ot
¼ 0; ð3:10Þ

rotðl�1BÞ ¼ 1

c2
oE

dt
þ l0gE; ð3:11Þ

divB ¼ 0; ð3:12Þ

_qq þ qdiv v ¼ 0; ð3:13Þ

q _vv ¼ divr þ qf þ fe; ð3:14Þ

q _UU � kDT ¼ r : d� cB � _BBþ qRþ E �G; ð3:15Þ

k
joxT j2

T
þ E �GP 0; ð3:16Þ
where fe and G are given, respectively, by
fe ¼ qEþ gE
 Bþ cðoxBÞ � B;

G ¼ gðEþ v
 BÞ � qv: ð3:17Þ

In the system of constitutive equations (3.9)–(3.16) some variables and expressions differ by several

orders of magnitude in problems of practical interest. Of course, we could repeat the non-dimensional

analysis of constitutive relations used by Rajagopal and R�uu�zzi�ccka (2001), but we prefer evaluating experi-

mental data of commercial MS elastomers given for example by Carlson and Jolly (2000) and Jolly et al.

(1996a).

We mentioned in the introduction that for commercially available MS elastomers, the electric charge and
the electric conductivity are very small. Therefore, we shall assume that q � 0 and g � 0, and from Eqs.

(3.7)1 and (3.17) it follows that Je ¼ 0 and G ¼ 0.

Secondly, experimental data for MS elastomers show that the influence of the electric filed is non-es-

sential, and therefore, we rewrite Eq. (3.2) as
U ¼ ÛUðT ;F;BÞ; ð3:18Þ

where the generalized vector of unknown values for MS elastomers now becomes U ¼ ðU ; rÞ.

From Eqs. (3.4)2, (3.4)3 and (3.8) it follows that the free energy function W is independent in Ee.
Moreover, it is assumed that the Helmholtz free energy W ¼ WðT ;F;BÞ is a smooth function, see for ex-

ample Holzapfel (2001) and Truesdell (1991). Then, using Eq. (2.15) with P ¼ 0, Eqs. (3.4) and (3.7) with

Me ¼ cB and Eq. (2.16), we obtain the following relation for the rate of the internal energy:
q _UU ¼ q
d

dt
W

�
� T

oW
oT

�
¼ q

oW
oF

: _FFþ q
oW
oB

� _BB� qT
o

oT
dW
dt

� �

¼ r

�
� T

or

oT

�
: d� cB � _BBþ q

�
� T

o2W
oT 2

�
_TT � qT

o2W
oToB

� _BB: ð3:19Þ
The specific heat capacity is defined, for example in M€uuller and Rugerri (1993), or Truesdell (1991), as
cv :¼ �T
o2W
oT 2

> 0; ð3:20Þ
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and using Eq. (3.19), we rewrite Eq. (3.15) in the form
qcv _TT � kDT � qR ¼ T
or

oT
: dþ qT

o2W
oToB

� _BB:
As it follows from Eq. (2.6) and from the independence of the thermodynamic variables F and T , the
density q as well as the magnetic field intensity H do not depend on the temperature T , therefore, from Eqs.

(3.4), (3.6) and (3.7) we have
qT
o2W
oToB

¼ �T
o

oT
ðcBÞ ¼ �T

oðl � 1Þ
oT

H ¼ � T
l0l

ol
oT

B:
As a result, the final reduction of the basic system gives
divE ¼ 0; ð3:21Þ

rotEþ oB

ot
¼ 0; ð3:22Þ

divB ¼ 0; ð3:23Þ

rotðl�1BÞ ¼ 1

c2
oE

dt
; ð3:24Þ

_qq þ qdiv v ¼ 0; ð3:25Þ

q _vv ¼ divr þ qf þ cðoxBÞ � B; ð3:26Þ

qcv _TT � kDT � qR ¼ T
or

oT
: d� uB � _BB; ð3:27Þ
where the material functions
c ¼ l � 1

l0l
; u ¼ T

l0l
ol
oT

ð3:28Þ
are defined from experimental constitutive curves l0jH j7!jBj at different temperatures. The main thermo-

dynamic inequality given by Eq. (3.16) is fulfilled automatically because the thermal conductivity k and

absolute temperature T are positive.
Every set of fields ðE;B; v; r; T Þ satisfying the system of constitutive equations (3.21)–(3.27) is named

admissible. Assuming that the inside and surface electric charge and the electric current are absent, the

solution of the system (3.21)–(3.27) is the set of admissible fields satisfying the following boundary con-

ditions:

i(i) for electro-magnetic fields E and B
n � ½E� ¼ 0; n � ½B� ¼ 0; n
 ½Eþ v
 B� ¼ 0; n
 ½l�1B� c�2v
 E� ¼ 0; ð3:29Þ

(ii) for the velocity v, the Cauchy stress tensor r and heat flux Q ¼ �koxT
½v� ¼ 0; n � ½r þ s� ¼ 0; n � ðr
h

þ cBBÞ � vþ 1
2

e0jEj2
�

þ l�1
0 jBj2

�
v� e0E
 Bþ koxT

i
¼ 0; ð3:30Þ
where s is the electro-dynamic stress tensor defined by
s ¼ 1
2
ðe0jEj2 þ ðl�1

0 � 2cÞjBj2ÞI� ðe0EEþ ðl0lÞ
�1
BBÞ:
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Here I is the second-order identity tensor, and n denotes the unit normal vector to the material surface in

the current configuration. The quantities enclosed by square brackets can in general be subjected to a

discontinuity at the boundary surface of a moving material volume.

The initial conditions are
Ejt¼0 ¼ E0; Bjt¼0 ¼ B0;

qjt¼0 ¼ q0; vjt¼0 ¼ v0; rjt¼0 ¼ r0; �koxTjt¼0 ¼ Q0; Tjt¼0 ¼ T 0; ð3:31Þ
where functions with upper zero index are known.

It is easily seen that the system of constitutive equations (3.21)–(3.27) is fully interconnected with the

complex system of boundary conditions Eq. (3.29) and (3.30).
4. Constitutive relations for hyperelastic MS materials

Constitutive equations for hyperelastic materials, frequently used to describe the non-linear elastic

behavior of filled and unfilled elastomers, are obtained as the derivative of a strain-energy or stored-energy
function U (see for example Green and Zerna, 1975; Holzapfel, 2001; Lurie, 1990; Ogden, 1997; Treloar,

1975). This scalar energy function is defined per unit reference volume rather than per unit mass. From

there, the Cauchy stress tensor has the well known form
r ¼ J�1 oUðFÞ
oF

� FT; ð4:1Þ
where the scalar J ¼ detF > 0 is the volume ratio.
From Eqs. (3.4)2 and (3.25) it follows that the strain-energy function is the Helmholtz free-energy

function since U ¼ q0W. However, the deformation tensor F is non-objective, see e.g. Lurie (1990), and

Truesdell and Noll (1992), and thus, for mathematical modeling of hyperelastic MS materials we assume

that U ¼ UðT ; b;BÞ. In this equation b ¼ F � FT is the left Cauchy–Green or the Finger objective defor-

mation tensor, B is the magnetic flux density and T the temperature. The Cauchy stress tensor is now

obtained from
r ¼ 2J�1 oUðbÞ
ob

� b ¼ 2J�1b � oUðbÞ
ob

: ð4:2Þ
Note, that for notational convenience, we do not distinguish between different strain-energy functions.

The Finger tensor b satisfies the well known Cayley–Hamilton identity
b3 � I1b
2 þ I2b� I3I ¼ O; ð4:3Þ
where O is the zero second-order tensor, bk ¼ bk�1 � b (k ¼ 1; 2; 3) and b0 ¼ I. The strain invariants Ii are
given by
I1ðbÞ ¼ tr b;

I2ðbÞ ¼ 1
2
½ðtr bÞ2 � trðb2Þ�;

I3ðbÞ ¼ detb ¼ J 2:

ð4:4Þ
It can be shown that the strain-energy function depends, for isotropic hyperelastic materials, on the three

strain invariants only, (see for example Holzapfel, 2001; Lurie, 1990; Ogden, 2001). For the stress-free
initial configuration where I1 ¼ 3, I2 ¼ 3 and I3 ¼ 1, the following relation, as shown by Drozdov (1996)

and Lurie (1990), holds
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oU
oI1

�
þ 2

oU
oI2

þ oU
oI3

�
¼ 0: ð4:5Þ
Constitutive material models to be used in finite elasticity are bound to satisfy some stringent mathe-

matical requirements to allow for a physical consistent solution for all possible deformations. The most
basic requirement implies that the value of the strain energy grows toward infinity for a continuum body

expanding to infinity or for the body to compress to a point with vanishing volume, i.e. U ! þ1 as

detb! þ1 or detb ! þ0, (see e.g. Holzapfel, 2001; Lurie, 1990; Ogden, 1997). As a result, the strain-

energy function is non-convex in b, see Drozdov (1996).

The second requirement is uniqueness of a solution in finite elasticity boundary value problems as pointed

out for example by Ciarlet (1988), Drozdov (1996) and Lurie (1990). Therefore, for the strain-energy

function U the condition of polyconvexity in b was introduced by Ball (1977). This condition does not

contradict basic hypotheses in continuum mechanics, but it is sufficient to establish the existence theorem for
the global minimizer of the appropriate energy functional in finite elastostatics. At present the condition of

polyconvexity of strain-energy functions is postulated as an additional restriction in hyperelasticity.

Ball (1977) showed that for an isotropic strain-energy function U, polyconvexity in b is equivalent to

convexity in the strain invariants I1, I2 and I3. We recall that a function f : Rn ! R (nP 1) is called convex if

for any x1; x2 2 Rn and for any t 2 ð0; 1Þ the following inequality is satisfied:
f ðtx1 þ ð1� tÞx2Þ6 tf ðx1Þ þ ð1� tÞf ðx2Þ:
As a result, the isotropic hyperelastic material may be described by a strain-energy function

U ¼ UðI1; I2; I3Þ, which is convex in the invariants given by Eq. (4.4). The Cauchy stress tensor is then

expressed in the Finger form, as shown by Drozdov (1996), Holzapfel (2001) or Lurie (1990)
r ¼ 2J�1 I3
oU
oI3

I

	
þ oU

oI1

�
þ I1

oU
oI2

�
b� oU

oI2
b2


: ð4:6Þ
For isotropic hyperelastic incompressible materials a suitable strain-energy function is given by
U ¼ UðI1; I2Þ � 1
2
pðI3 � 1Þ; ð4:7Þ
where p=2 serves as an indeterminate Lagrange multiplier. In this case the Cauchy stress tensor has the

modified Finger form
r ¼ �pIþ 2
oU
oI1

�
þ I1

oU
oI2

�
b� 2

oU
oI2

b2: ð4:8Þ
From the physical point of view, p is the hydrostatic pressure which is a supplementary thermo-
dynamical variable. In this case the system of mechanical constitutive equations (3.25) and (3.26) is

complemented by the incompressibility condition J ¼ 1, as shown for example by Lurie (1990) or Ogden

(2001).

From the theory of invariant, see Spencer (1971), it follows that an isotropic hyperelastic MS material

can be fully described by the set of invariants
T ; jBj2; I1ðbÞ; I2ðbÞ; I3ðbÞ;
and a set of pseudo-invariants
Lk ¼ B � bk � B; k ¼ 1; 2; . . . ð4:9Þ
But from the Cayley–Hamilton identity shown in Eq. (4.3), it follows that for an exponent kP 3, the
corresponding pseudo-invariants Lk depend only on the invariants jBj2, I1, I2, I3 and on the pseudo-

invariants L1 and L2.
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Thus, in the most general case the energy function U for isotropic hyperelastic MS material is given by
U ¼ UðT ; jBj2; I1; I2; I3; L1; L2Þ; ð4:10Þ
which is convex in the invariants I1, I2, I3 and in the pseudo-invariants L1, L2.

The derivative of the pseudo-invariants with respect to the Finger tensor are given by
oL1

ob
¼ BB;

oL2

ob
¼ b � BBþ BB � b;
and from Eqs. (4.2) and (4.6), we receive the augmented expression for the Cauchy stress tensor
r ¼ 2J�1 I3
oU
oI3

I

	
þ oU

oI1

�
þ I1

oU
oI2

�
b� oU

oI2
b2


þ 2J�1 oU

oL1

BB � b
	

þ oU
oL2

ðb � BB � bþ BB � b2Þ


:

We known from the preceding section that for MS elastomers the Cauchy stress tensor is symmetric,

which requires that oU=oL1 and oU=oL2 must vanish, i.e. U does not depend on the pseudo-invariant L1 and

L2. From the physical point of view this result indicates that the magnetic flux density B is not distorted as it

passes through an isotropic medium.
As a result, the strain-energy function of the isotropic MS elastomer depends only on the temperature T

and on the intensity of the magnetic field jBj2.
To describe the mechanical behavior of an isotropic incompressible MS elastomer we propose, for

simplicity, the following two parameter strain-energy function, which is polyconvex in b:
U ¼ Gq�1 I1ðbÞð � 3Þq=2: ð4:11Þ
Here G > 0 is the shear modulus in the reference configuration, known from the linear theory, and q > 1

is the parameter of growth, which are functions of T and jBj2 only. For q ¼ 2 we obtain the classical neo-

Hookean model, which may be derived using concepts from the statistical theory of the elasticity of the

molecular network structure of vulcanized rubber, see Treloar (1975).

We assume that the shear modulus G and the growth parameter q can be written in the form
G ¼ G0 þ G1jBj2; q ¼ q0 þ q1jBj2; ð4:12Þ
where G0, G1, q0 and q1 are all positive; G0 and q0 are the field independent shear modulus and growth

parameter. As a result, combining Eqs. (4.11) and (4.12), we obtain a four-parameter model for an isotropic

incompressible MS elastomer, where G0, G1, q0 and q1 are functions of T only.

For a compressible MS elastomer the following strain-energy function can be used:
U ¼ Gq�1ðI1ðbÞ � 3Þq=2 þ KhðJÞ; ð4:13Þ
where K is the bulk modulus in the reference configuration and is a function of T and jBj2 only. Here h:
ð0;þ1Þ ! ½0;þ1Þ is the function of compressibility such that hð1Þ ¼ 0 and hðJÞ ! 1 as J ! þ0 or

J ! 1. For example, a good correlation of theoretical results and experiment data for compressible

rubber-like materials is given by the function introduced by Ogden (1972)
hðJÞ ¼ b�2ðb log J þ J�b � 1Þ; ð4:14Þ
where b > 0 is an empirical coefficient.

We assume again that
K ¼ K0 þ K1jBj2; b ¼ b0 þ b1jBj
2
; ð4:15Þ
where K0 and b0 are both positive and represent the magnetic field independent bulk modulus and field
independent volumetric parameter of growth, K1 and b1 are both positive. From Eqs. (4.12)–(4.15), we
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obtain an eight-parameter model for an isotropic compressible MS elastomer, where G0, G1, q0, q1, K0, K1,

b0 and b1 are functions of T only.

Remark 4.1. For the parameter q ¼ 1 in Eq. (4.11) the existence of the limit static load and a discontinuous
mapping with shear jumps of the first type have been shown, see Brigadnov (1993, 1996, 1999), It is sug-

gested that from a mathematical point of view the solution of the elastostatic variational problem requires a

relaxation process. The original partial relaxation is based on a discontinuous finite-element approxima-

tion, see Brigadnov (2001a,b). However, we will not discuss mathematical correctness of boundary value

problems for MR elastomers in this paper. We plan to study this problem and numerical solution in an

upcoming publication.

Remark 4.2. The dependence of the parameters G, q, K and b on jBj2 can be described by alternative
theoretical or experimental functions as well, see for example Jolly et al. (1996a,b), Ginder and Davis (1994)

and Rigbi and Jilken (1983).
5. Example: shear deformation between parallel plates

Let us consider the problem of a MS elastomer confined by two infinite parallel plates in the xy-plane
and subjected to an unidirectional quasi-static shear deformation along the x-direction, see Fig. 1. Suppose
that the mapping associated with the elastomer and that the magnetic field intensity perpendicular to the xy-
plane, are given by
Fig. 1

perpen
x ¼ Xþ uðzÞi; H ¼ Hk; z 2 ½0; h�; ð5:1Þ

where i, j, k are the Cartesian basis vectors, u is the displacement along the x-direction, and h is the distance

between the plates.

We shall assume that:

(1) the deformation is isothermal, i.e. T ¼ const, o=oT ¼ 0 and R � 0;

(2) the hyperelastic MS elastomer is homogeneous, isotropic and incompressible;

(3) in the initial state the hydrostatic pressure vanishes;

(4) for the unidirectional shear, all values are constant in the y-direction, i.e. o=oy ¼ 0;

(5) for the quasi-static deformation the inertia term in the left-hand side of Eq. (3.26) as well as initial con-

ditions Eq. (3.31) are neglected;

(6) the body force is absent, i.e. f � 0;
. Unidirectional shear of an incompressible MS elastomer between two infinite parallel plates subjected to a magnetic field

dicular to shear direction.
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(7) the shear deformation is due to a constant tangent force Px, defined per unit length and per unit width

along the x- and y-direction respectively. The force Px is applied to the top plate along the x-direction;
(8) the elastomer adhere to the surfaces of the two plates;

(9) the magnetic field intensity is constant, i.e. H ¼ H0 ¼ const and B ¼ B0k with B0 ¼ ll0H0.

Within the framework of our assumptions, the constitutive equations (3.21)–(3.24) are satisfied for E � 0

and the power balance equation (3.27) is fulfilled automatically.

The Finger tensor has the form
b ¼ Iþ u02iiþ u0ðikþ kiÞ;

and the condition of incompressibility J ¼ 1 is fulfilled automatically.

We shall assume that the MS elastomer is described by the strain-energy function Eq. (4.11) and (4.12)

with the positive constants G0, G1, q0 and q1.
From the general equation of the Cauchy stress tensor in Eq. (4.8), valid for incompressible elastomers,

it now follows that the Cauchy stress tensor is given by
r ¼ �pIþ Gju0jq�2½Iþ u02iiþ u0ðikþ kiÞ�;

where p is the hydrostatic pressure. From this relation we find the stress components
rxx ¼ �p þ Gju0jq�2ð1þ u02Þ;

ryy ¼ rzz ¼ �p þ Gju0jq�2
;

rxz ¼ Gju0jq�1
; rxy ¼ ryz ¼ 0:
From the equilibrium equation (3.26) and from our assumptions we obtain the system of differential

equations
r0
xz ¼ Gððu0Þq�1Þ0 ¼ 0;

ð�p þ rzzÞ0 ¼ 0;

(
ð5:2Þ
with the boundary conditions
rxzðhÞ ¼ Px;
uð0Þ ¼ 0:

�

The solution of this boundary value problem has the simple form
uðzÞ ¼ z
Px
G

� �1=ðq�1Þ

; rxz ¼ Px; rxy ¼ ryz ¼ 0; rxx ¼ ryy ¼ rzz ¼ p ¼ G
Px
G

� �ðq�2Þ=ðq�1Þ

: ð5:3Þ
In the above numerical example we have used data from a commercially available MS elastomer, see

Jolly et al. (1996a). The carrier elastomer was a mould using silicone oil loaded with a specified volume

percent of carbonyl iron particles of a 3–4 lm mean diameter. The MS elastomer containing 30% iron by

volume had the nominal shear modulus G0 
 1:8 MPa, the yield magnetic flux density By 
 0:9 T and the

effective relative magnetic permeability l 
 7, see Simon et al. (2001).

For Px ¼ G0, the normalized displacement of the top plate along the x-direction is only a function of the

constant magnetic flux density B0:
v ¼ uðhÞ
h

¼ uðB0Þ ¼ ð1þ gB2
0Þ

1=ð1�q0�q1B2
0
Þ
; ð5:4Þ
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Fig. 2. The normalized displacement of the top plate as a function of the magnetic flux density. The curves 1, 2, 3 and 4 correspond,

respectively, to the initial stretching parameter q0 ¼ 1:3, 1.6, 2.0 and 2.4.
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Fig. 3. The response of the shear modulus to an applied magnetic field for 30% iron by volume elastomer. Theoretical model data (––)

using parameters q0 ¼ 1:85, q1 ¼ 0:77, g ¼ 0:91 and experimental data (�) by Jolly et al. (1996a, Fig. 7).
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where g ¼ G1=G0 > 0. The normalized change in the shear modulus is given by the equation
dG ¼ DG
G0

¼ wðB0Þ ¼ 1� uðB0Þ; ð5:5Þ
where DG is the absolute change in the shear modulus, which was measured in physical experiments, see

Jolly et al. (1996a,b).

In Fig. 2 the graphs of the Eq. (5.4) are shown for parameters g ¼ 1 and q1 ¼ 1. The curves 1, 2, 3 and 4
correspond, respectively, to an initial growth parameter of q0 ¼ 1:3, 1.6, 2.0 and 2.4. It is easily seen that in

the pre-yield region, i.e. for B0 6By , increasing the magnetic field B0 decreases the MS elastomer dis-

placement.

In Fig. 3 the normalized change of the shear modulus for values of the parameters q0 ¼ 1:85, q1 ¼ 0:77
and g ¼ 0:91 is shown. The values of these parameters were obtained by the method of minimal squares.

Eq. (5.5) provides an acceptable agreement in the pre-yield region between results of the numerical simu-

lation and the experimental observation. In reality, the presented model could be fully verified using ex-

perimental data which are, unfortunately, absent in open literature.
6. Conclusions

In this paper, we have summarized the complete system of constitutive equations for an isotropic MS

elastomer within the framework of the electro-dynamical and thermo-mechanical theories. For hyper-
elastic, isotropic MS elastomers a simple strain-energy function has been presented and verified by ex-

perimental data. An acceptable agreement was illustrated between results of the numerical simulation and

experimental observation. It was shown that the effect of the magnetic field is to stiffen the shear response of

the material.

This mathematical framework can be used to develop more complex material laws of MS elastomers.

However, the choice of the most appropriate model must be verified by detailed experimental data.

In the future we intend to use the presented simple strain-energy function to address issues related to the

mathematical correctness and numerical solution of simple and complex boundary value problems.
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